Effect of muscle length on cross-bridge kinetics in intact cardiac trabeculae at body temperature

نویسندگان

  • Nima Milani-Nejad
  • Ying Xu
  • Jonathan P. Davis
  • Kenneth S. Campbell
  • Paul M.L. Janssen
چکیده

Dynamic force generation in cardiac muscle, which determines cardiac pumping activity, depends on both the number of sarcomeric cross-bridges and on their cycling kinetics. The Frank-Starling mechanism dictates that cardiac force development increases with increasing cardiac muscle length (corresponding to increased ventricular volume). It is, however, unclear to what extent this increase in cardiac muscle length affects the rate of cross-bridge cycling. Previous studies using permeabilized cardiac preparations, sub-physiological temperatures, or both have obtained conflicting results. Here, we developed a protocol that allowed us to reliably and reproducibly measure the rate of tension redevelopment (k(tr); which depends on the rate of cross-bridge cycling) in intact trabeculae at body temperature. Using K(+) contractures to induce a tonic level of force, we showed the k(tr) was slower in rabbit muscle (which contains predominantly β myosin) than in rat muscle (which contains predominantly α myosin). Analyses of k(tr) in rat muscle at optimal length (L(opt)) and 90% of optimal length (L(90)) revealed that k(tr) was significantly slower at L(opt) (27.7 ± 3.3 and 27.8 ± 3.0 s(-1) in duplicate analyses) than at L(90) (45.1 ± 7.6 and 47.5 ± 9.2 s(-1)). We therefore show that k(tr) can be measured in intact rat and rabbit cardiac trabeculae, and that the k(tr) decreases when muscles are stretched to their optimal length under near-physiological conditions, indicating that the Frank-Starling mechanism not only increases force but also affects cross-bridge cycling kinetics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Frank-Starling mechanism involves deceleration of cross-bridge kinetics and is preserved in failing human right ventricular myocardium.

Cross-bridge cycling rate is an important determinant of cardiac output, and its alteration can potentially contribute to reduced output in heart failure patients. Additionally, animal studies suggest that this rate can be regulated by muscle length. The purpose of this study was to investigate cross-bridge cycling rate and its regulation by muscle length under near-physiological conditions in ...

متن کامل

Effects of BDM, [Ca2+]o, and temperature on the dynamic stiffness of quiescent cardiac trabeculae from rat.

Studies of the passive mechanical properties of cardiac tissue have traditionally been conducted at subphysiological temperatures and various concentrations of extracellular Ca(2+) ([Ca(2+)](o)). More recently, the negative inotropic agent 2,3-butanedione monoxime (BDM) has been used. However, there remains a lack of data regarding the influence of temperature, Ca(2+), and BDM on the passive me...

متن کامل

Cross-bridge kinetics in rat myocardium: effect of sarcomere length and calcium activation.

We tested the hypotheses that Ca(2+) concentration ([Ca(2+)]) and sarcomere length (SL) modulate force development via graded effects on cross-bridge kinetics in chemically permeabilized rat cardiac trabeculae. Using sinusoidal length perturbations, we derived the transfer functions of stiffness over a range of [Ca(2+)] at a constant SL of 2.1 micrometer (n = 8) and at SL of 2.0, 2.1, and 2.2 m...

متن کامل

Isolated cat trabeculae in a simulated feline heart and arterial system. Contractile basis of cardiac pump function.

Isolated cat trabeculae were studied under conditions resembling those present for the muscle fibers in the wall of the left ventricle. To obtain such a situation experimental animals, perfusion fluid, temperature, stimulation frequency, peak stress values, contraction sequence, length, and force control were chosen with respect to that criterion. Results were compared with those described for ...

متن کامل

Effect of Hypothermia by JZL-184 on Muscle Strength and Sensory-Motor Dysfunction in Permanent Middle Cerebral Artery Ischemia Model in Male Mice

Introduction: Currently, there is no effective and comprehensive treatment for ischemic stroke. There is strong clinical evidence for the benefits of hypothermia in neuroprotection. Therefore, the present study aimed to determine the effect of mild non-invasive hypothermia by JZL-184 on behavioral improvement in stroke rats. Methods: This study was performed on 5 groups of male mice weighing 2...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 141  شماره 

صفحات  -

تاریخ انتشار 2013